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The spliceosome is formed on pre-mRNA substrates from five

small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and

U5 snRNPs), and numerous non-snRNP factors.

Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5

snRNA, U4/U6 snRNA duplex and approximately 30 proteins

and represents a substantial part of the spliceosome before

activation. Schizosaccharomyces pombe U2.U6.U5

spliceosomal complex is a post-catalytic intron lariat

spliceosome containing U2 and U5 snRNPs, NTC (nineteen

complex), NTC-related proteins (NTR), U6 snRNA, and an RNA

intron lariat. Two recent papers describe near-complete atomic

structures of these complexes based on cryoEM single-particle

analysis. The U4/U6.U5 tri-snRNP structure provides crucial

insight into the activation mechanism of the spliceosome. The

U2.U6.U5 complex reveals the striking architecture of NTC and

NTR and important features of the group II intron-like catalytic

RNA core remaining after spliced mRNA is released. These two

structures greatly advance our understanding of the

mechanism of pre-mRNA splicing.
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Introduction
Much of our current knowledge of the molecular mecha-

nism of pre-mRNA splicing is based on three decades of

intensive research using extracts made from the budding

yeast Saccharomyces cerevisiae or from HeLa cell nuclei [1,2].

These extracts contain U1 and U2 snRNPs and U4/U6.U5

tri-snRNPs as major spliceosomal components and provide

robust systems for monitoring spliceosome assembly and

splicing reactions when synthetic pre-mRNA substrates
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are added [2–4]. Biochemical studies of these two systems,

combined with genetic approaches, have established a

universal mechanism of nuclear pre-mRNA splicing

(Figure 1). Initially U1 and U2 snRNPs recognise the 50

splice site and the branch point in pre-mRNA and recruit

the pre-assembled U4/U6.U5 tri-snRNP to form the fully

assembled but catalytically inactive complex B. Major

structural and compositional changes then produce the

catalytically active complex B*. These changes include

dissociation of U1 snRNP from the 50 splice site, unwind-

ing of the extensively base-paired U4/U6 snRNA duplex

by Brr2 helicase, leading to the loss of U4 snRNA together

with its associated proteins, the recruitment of large protein

complexes known as NTC (nineteen complex) and NTR

(nineteen related complex) [5] and formation of a new

base-pairing interaction between U2 and U6 snRNAs that

creates an active centre similar to that of group II self-

splicing introns [6,7��,8��,9]. These remodelling events

position the 20OH group of the branch point adenosine

to attack the phosphodiester bond at the 50 splice site,

producing exon1 and lariat intron-exon2 splicing inter-

mediates. The spliceosome then undergoes further remo-

delling to become complex C* in which the exons are

aligned on the conserved loop 1 of U5 snRNA for the

second trans-esterification reaction [10,11]. The spliced

mRNA product is then released and the residual intron

lariat spliceosome (ILS) is disassembled, recycling the

snRNPs for subsequent rounds of splicing and allowing

degradation of the excised intron lariat [4,12,13�]. Spliceo-

somal remodelling events are regulated by several ATP-

dependent RNA helicases, whose activities define further

conformational states of the spliceosome [14,15].

The crystal structure of U1 snRNP has been determined

[16,17�] and its mechanism of 50 splice site selection is

now well understood. However, the highly dynamic na-

ture and low abundance of the splicing machinery have

prevented crystallisation of other snRNPs or intact spli-

ceosomes. The pioneering EM work of the Stark/Lühr-

mann, Moore/Jurica/Grigorieff and Ohi/Gould/Walz

groups has revealed the overall shape of the spliceosome

at different assembly steps (Figure 1; reviewed in [18]),

and some protein and RNA components have been

located within these structures by various labelling tech-

niques [19–21]. Taking advantage of crucial advances in

cryoEM single particle analysis [22] two recent papers

report the structure of two spliceosomal complexes, the

Saccharomyces cerevisiae U4/U6.U5 tri-snRNP [23��] and a

Schizosaccharomyces pombe spliceosomal complex [24��],
www.sciencedirect.com
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Step-wise spliceosome assembly from its U-snRNP components. The U1 snRNP crystal structure [16,17�] and available EM maps of some of the

complexes are shown: pre-spliceosome (EMDB entry EMD-1325), U4/U6.U5 tri-snRNP [23��], BDU1 [27], complex C [70] and intron lariat

spliceosome (ILS) [24��].
known as endogenous U2�U5�U6 snRNA complex [13�]
or U5.U2/U6 spliceosome complex [25]. These discover-

ies have advanced our structural knowledge of the spli-

ceosome enormously.

Structure of the S. cerevisiae U4/U6.U5 tri-
snRNP
At about 1.5 MDa the U4/U6.U5 tri-snRNP is the largest

pre-assembled spliceosomal complex [19,26] and repre-

sents a substantial part of the spliceosome before catalytic

activation (complex B) [21,27,28]. It comprises more than

30 proteins, U5 snRNA and extensively base-paired U4

and U6 snRNAs [29,30]. A cryoEM map of native affinity-

purified yeast U4/U6.U5 tri-snRNP was obtained to an

overall resolution of 5.9 Å [23��]. The map was of sufficient

resolution to fit the crystal structures or homology models

of 29 proteins as well as double-stranded snRNA regions,

leaving unassigned only a small fraction of the density

(Figure 2a). The U5 snRNP components Prp8, Snu114 and

Brr2 form a stable complex [31] and play key roles in the

activation of the spliceosome and formation of the catalytic

centre [32]. The Brr2 helicase contains two helicase

cassettes each comprising two RecA, winged helix

(WH), Ratchet, helix-loop-helix (HLH), fibronectin3-like

(FN3) domains [33–37]; however only the N-terminal
www.sciencedirect.com 
cassette is catalytically active. Brr2 unwinds the U4/U6

snRNA duplex [33], allowing U6 snRNA to form an RNA

structure highly similar to the active site of group II self-

splicing introns, with the binding sites for two catalytic

divalent metal ions [7��,8��]. Snu114 is a GTPase homolo-

gous to eukaryotic elongation factor-2 (EF2) and prokary-

otic elongation factor EF-G [38,39]. It has been suggested

that Brr2 is activated when Snu114 is bound to GTP [40] or

when GTP is hydrolysed [41].

In U4/U6.U5 tri-snRNP, Prp8, Snu114 and the U5 snRNP

core domain occupy the lower part of the triangular assem-

bly, and Brr2 and the U4/U6 di-snRNP occupy the upper

part (Figure 2a). Prp8, the largest and most conserved

protein in the spliceosome [32], is located at the centre

of the assembly and acts as a hub for RNA–protein and

protein–protein interactions. The crystal structure of Prp8

residues 885–2413 [42], in complex with the assembly

factor Aar2 [43], revealed the ‘large domain’, consisting

of Reverse Transcriptase-like (RT), thumb/X, linker and

Type II restriction endonuclease-like domains [42]. The

large domain is connected to the RNaseH-like and the

Jab1/MPN domains with disordered linkers of approxi-

mately 10 and 70 residues, respectively. Aar2 restrains

these three domains into a stable assembly. In U4/
Current Opinion in Structural Biology 2016, 36:48–57
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Figure 2
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Structure overview of (a) the S. cerevisiae U4/U6.U5 tri-snRNP and (b) the S. pombe U2.U6.U5 ILS complex. In both structures, the RNA

components are coloured in blue; Prp8, Snu114 and Sm/LSm proteins are coloured in green, red and grey, respectively. The two structures are

shown in such a way that the U5 Sm proteins have a similar orientation. (a) The tri-snRNP structure features 29 fitted proteins with U4/U6 and U5

snRNAs. (b) The U2.U6.U5 ILS structure features 37 fitted proteins and U2/U6 and U5 snRNAs. NTC components are all coloured in magenta

except for Prp19 being highlighted in light green. NTR components are all coloured in yellow.
U6.U5 tri-snRNP Aar2 is not present [37] and both the

RNaseH and Jab1/MPN domains are released from the

large domain. These two domains could change positions

and orientations further in different spliceosomal com-

plexes and interact with different protein and RNA com-

ponents [42] (Figure 2a). In U4/U6.U5 tri-snRNP, the

RNaseH-like domain rotates with respect to the large

domain while the Jab1/MPN domain, which can form a

stable complex with Brr2 [37,44], moves more than 120 Å
Current Opinion in Structural Biology 2016, 36:48–57 
and interacts with the Endonuclease-like domain. The tri-

snRNP structure revealed that the N-terminal domain of

Prp8 is predominantly a-helical and stably associates with

Snu114 [45,46] and U5 snRNA stem-loop 1.

In the upper part of tri-snRNP U4 and U6 snRNAs are

extensively base-paired, with U4-U6 stems I and II

coaxially stacked (Figure 3): Snu13 binds to the k-turn

motif of U4 snRNA 50 stem-loop inducing further assembly
www.sciencedirect.com
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Figure 3
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Comparison of the proteins and RNAs at the core of the U4/U6.U5 tri-snRNP and U2.U6.U5 spliceosomal complex. (a) Schematic representation of the

RNA secondary structure in U4/U6.U5 tri-snRNP; (b) Schematic representation of the RNA secondary structure and selected proteins contacting the

RNA in U2.U6.U5 spliceosomal complex. Cwc2 strongly cross-links with U6 snRNA ISL in S. cerevisiae and human complex C [66] but in S. pombe

U2.U6.U5 spliceosomal complex Cwc2(Cwf2) is not in contact with U6 ISL [24��]; (c) Core structure of the U4/U6.U5 tri-snRNP; (d) Core structure of the

U2.U6.U5 spliceosomal complex; (e) Brr2 loading onto U4 snRNA in the U4/U6.U5 tri-snRNP. Prp8-J, Jab1/MPN domain of Prp8; Prp8-RH, RNaseH-

like domain of Prp8; Prp8-L, large domain of Prp8; Prp8-N, N-terminus of Prp8; BS, branch site; 50SS, 50-splice site; ISL, internal stem-loop; SL, stem-

loop. In (c) and (d) the large domain of Prp8 is in the same orientation.
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of Prp31 and the Prp3-Prp4 dimer [47–49]. The WD40

domain of Prp4 [50] interacts with the ferredoxin-like

domain of Prp3, which in turn binds the single stranded

region of U6 snRNA [51�] and contacts the Lsm core

domain bound to the 30 end of U6 snRNA. Finally, Prp6

forms a striking a-solenoid structure connecting Snu13 and

Prp4 with the RNaseH-like domain of Prp8 (Figure 2a).

Comparison with the low-resolution structure of complex B

shows that U2 snRNP interacts with this region of U4/

U6.U5 tri-snRNP either directly or indirectly [21,27,28].

Brr2 forms a stable complex with the Jab1/MPN domain of

Prp8 [37,44], which is connected to its RNaseH-like domain

through a 70-residue flexible linker peptide. In vitro experi-

ments suggested that Brr2 loads onto the single stranded

region of U4 snRNA between the 30 stem-loop and stem I of

the U4/U6 snRNA duplex and translocates along U4

snRNA [52,53]. Mozaffari-Jovin et al. [53] proposed that

the Prp8 RNaseH domain binds to the forked single-

stranded region preceding U4/U6 stem I and prevents

the loading of Brr2 onto U4 snRNA. In the U4/U6.U5

tri-snRNP this single stranded region of U4 snRNA is

already loaded into the active site of the N-terminal helicase

cassette of Brr2 ready for unwinding by translocation along

U4 snRNA (Figures 2a and 3e). Upon addition of ATP, U4/

U6.U5 tri-snRNP is disassembled as a consequence of the

U4/U6 snRNA duplex unwinding by Brr2 [23��].

Prp8 crosslinks to 4-thiouridine introduced at key posi-

tions in U6 snRNA, the invariant exon-binding loop 1 of

U5 snRNA and at all three sites of chemistry in the pre-

mRNA (50-SS, branch point and 30-SS) showing that Prp8

interacts intimately with the catalytic RNA core of the

spliceosome [54]. The crosslinks of the pre-mRNA

branch point (BP + 2) in the catalytically active spliceo-

some map to the region between Prp8 residues 1585 and

1598 (C.M. Norman and A.J.N., unpublished result),

which is located on the surface of the RT Thumb/X

and linker domains, the most positively charged and

conserved surface of Prp8. This surface is part of a cavity

that could accommodate the group II intron-like catalytic

RNA core and hence we proposed that this region forms

the active site cavity of the spliceosome [42]. In the U4/

U6.U5 tri-snRNP structure, the conserved loop 1 of U5

snRNA, which aligns the exons in the second catalytic

step [10,11], is inserted into the active site cavity and

points into the most electropositive and conserved surface

of Prp8 in the Thumb/X and linker region (Figure 3c).

This suggests that part of the active site is pre-assembled

in the tri-snRNP and that Prp8 provides a platform for

docking the other RNA components at the catalytic core.

Structure of the S. pombe U2.U6.U5
spliceosomal complex
Although fission yeast, Schizosaccharomyces pombe, has been

used extensively to study various aspects of eukaryotic cell

functions, its use for the study of pre-mRNA splicing has

been limited as it has not been possible to prepare active
Current Opinion in Structural Biology 2016, 36:48–57 
splicing extract. In S. pombe cell extracts an endogenous

complex containing U2, U6 and U5 snRNAs (hereafter

referred to as ‘U2.U6.U5 spliceosomal complex’) is found

as an abundant component. Ohi et al. [25] purified this

complex using TAP-tagged Cdc5, an NTC component,

and presented a 29 Å resolution EM structure. The Moore/

Query group purified U2.U6.U5 spliceosomal complex

using a split TAP-tag approach and carried out compre-

hensive characterisation of its protein and RNA compo-

nents [13�]. They estimated the molecular mass of this

complex to be approximately 2.5 MDa. On the basis of

RNAseq analysis they concluded that this complex is an

ILS. Interestingly the Brr2 helicase, crucial for U4/U6

snRNA unwinding during activation, is under-represented

in this complex even in low salt and completely missing in

high salt. Brr2 helicase is also implicated in unwinding U2/

U6 snRNA duplex during spliceosomal disassembly [40],

perhaps explaining how ILS accumulates in S. pombe
extract.

Yan et al. [24��] recently reported a 3.6 Å resolution

structure of the U2.U6.U5 spliceosomal complex purified

using a protocol based on Ohi et al. [25] and modeled the

snRNAs, the lariat intron and 37 proteins corresponding

to a combined molecular mass of approximately 1.3 MDa

(Figure 2b) [55��]. Distinct protein names have been used

for S. pombe splicing factors; for clarity, the more familiar

human/S. cerevisiae nomenclature will be used below

alongside italicized S. pombe nomenclature (see

[13�,56]). The structure was divided into Body, Head

and Arms I and II (Figure 2b and 4). Arm I comprises a

subdomain of U2 snRNP comprising U2B00/U2A0 and the

core domain consisting of seven Sm proteins from which

U2 snRNA extends into the active site cavity. The most

notable feature of Arm II is a helix bundle composed of

three NTC components — Prp19(Cwf8), Snt309(Cwf7)

and Cef1(Cdc5) — providing a first glimpse of the remark-

able architecture of NTC. Prp19(Cwf8) [57], known as a

key factor for NTC assembly [56,58–61], forms a tetramer

via its U-box and coiled-coil domains [60] although only

one of the WD40 domains is ordered [62] (Figure 4). The

long a-helices of Snt309(Cwf7) and the C-terminal region

of Cef1(Cdc5) interact with the coiled coil region of

Prp19(Cwf8) whereas the N-terminal region of Cef1(Cdc5)

reaches the RT domain of Prp8(Spp42). In the Head

domain long arched a-helical solenoids of Syf1(Cwf3)

and Syf3(Cwf4) form a cross creating a basket-like struc-

ture while Aquarius(Cwf11) — comprising armadillo and

helicase domains [63�] — binds to one arm of Syf1(Cwf3).

Aquarius(Cwf11) is integrated into the spliceosome as part

of intron binding complex (IBC) which crosslinks with

components of U2 snRNP [63�]. The Aquarius(Cwf11)

ATPase is activated by RNA but its precise role in

splicing is unknown. In the U2.U6.U5 spliceosomal com-

plex Aquarius(Cwf11) is located between U2 snRNP and

Syf1(Cwf3) and their interaction is mediated or strength-

ened by Syf1(Cwf3) and Isy1 [63�].
www.sciencedirect.com
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Figure 4
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Structure of NTC and NTR. (a) The distribution of NTC and NTR components within the U2.U6.U5 spliceosome, comprising Body, Head, Arm I

and Arm II domains. The Arm II, Head and Body regions are highlighted in red, green and blue, respectively. (b) The structures of NTC

components, Prp19, Cef1 and Snt309 in the Arm II domain. Prp19 (red) forms a tetramer via its coiled-coil helices and U-box, and further interacts

with Cef1 (purple) and Snt309 (pink). (c) Aquarius (green) and two superhelical proteins Syf1 (yellow) and Syf3 (dark green) form the Head domain

protruding from the main body of the U2.U6.U5 spliceosomal complex. (d) The structures of NTC and NTR components in the Body region. Two

proteins, Cwc2 (Cwf2) and Cwf19, shown in light and dark blue, respectively, are found close to the catalytic centre. Cwc2 was shown to interact

with U6 snRNA ISL and induce an active conformation of the spliceosome’s catalytic RNA elements [66]. In the U2.U6.U5 spliceosomal complex

Cwc2 no longer interacts with U6 snRNA ISL. Cwf19 shows homology to S. cerevisiae Drn1 which interacts with the debranching enzyme Dbr1

[65�].
In the Body domain Prp8(Spp42), Snu114(Cwf10), and the

U5 core domain are arranged essentially in the same way as

in the S. cerevisiae U4/U6.U5 tri-snRNP (Figures 2 and 3)

but loop 1 of U5 snRNA has moved slightly deeper into the

active site cavity. As in U4/U6.U5 tri-snRNP, stem-loop

1 of U5 snRNA points into the most positively charged and

conserved surface of the Thumb/X and linker domains of

Prp8(Spp42) where the BP + 2 nucleotide crosslinks with

an amino acid on this surface (between residues 1585 and

1598 of S. cerevisiae Prp8) in the active spliceosome (C.M.

Norman and A.J.N., unpublished result) [42]. After the U4/

U6.U5 tri-snRNP joins complex A, U1 snRNP is displaced

from the 50 splice site and the ACAGA sequence in U6

snRNA pairs with the 50-splice site. During spliceosomal

activation Brr2 unwinds the U4/U6 snRNA duplex and U4

snRNA together with Snu13, Prp31 and Prp3/Prp4 disso-
www.sciencedirect.com 
ciate from the spliceosome, causing U6 snRNA to be

dramatically restructured (Figure 3).

Whereas in the U4/U6.U5 tri-snRNP U6 snRNA is close

to the RNase H-like domain of Prp8, in the U2.U6.U5

complex U6 has been repositioned into the active site

cavity formed by the Prp8(Spp42) large and N-terminal

domains (Figure 3). Here U6 snRNA forms extensive

base pairs with U2 snRNA to produce a group II intron-

like catalytic centre (Figure 5) [6,7��,9]. Consistent with

previous genetic and biochemical studies [6,8��], U2 and

U6 form a triplex that brings the U6 ISL and the AGC

triad into close proximity and allows U6 to bind two Mg2+

ions for catalysis (Figure 5c). The triplex configuration in

the U2.U6.U5 complex is similar to that observed for

domain V in pre-catalytic and post-catalytic structures of

the group II intron (Figure 5a–c). The 50 splice site/
Current Opinion in Structural Biology 2016, 36:48–57
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Figure 5
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Comparison of the RNA core of the U2.U6.U5 spliceosomal complex to the catalytic core of group II self-splicing introns. (a) Structure of the

catalytic domain V of a group IIC intron trapped in the pre-catalytic state in the presence of Ca2+ (PDB 4FAQ) [71]. The 50 splice site scissile

phosphate is aligned with the two metals bound at the core in a catalytic configuration, as shown in the lower diagram. Note that the nucleophile

is a water molecule, rather than the branch adenosine 20OH in group IIB and spliceosomal introns. (b) Structure of the RNA core of a group IIB

intron trapped in a post-catalytic, branched configuration, with the ligated exons bound at the core (PDB 4R0D) [72]. Note that the interactions

between domain V and the catalytic metals are conserved between the group IIC and group IIB structures (compare to a). (c) Structure of the

RNA core of the U2.U6.U5 spliceosomal complex in a post-catalytic configuration (PDB 3JB9) [24��], probably following release of the mRNA.

Note that the interactions between U6 ligands and the two Mg2+ ions at the core are slightly re-organized compared to the group II intron

structures. Lower panels show schematic representations of the structures, including key interactions between the catalytic metals and the

reactive phosphates in the group II structures. Residues that position the catalytic metals are shown in orange and the catalytic metals are

coloured light blue, while residues that form the third strand of the triplex and their interactions are shown in yellow.
ACAGA helix is perpendicular to the U2 branch helix —

a configuration that mimics the position of the 50 splice

site e–e0 helix with respect to the DVI branch helix of

group II introns (Figure 5b,c). However, the 20–50 branch

linkage is 20 Å removed from the two Mg2+ ions bound by

the U6 triplex (Figure 5c). A similar displacement of the

50 splice site is seen in the post-catalytic group II struc-

ture, underscoring the post-catalytic configuration of the

U2.U6.U5 complex (Figure 5b,c). By contrast, in the pre-

catalytic group II structure, the 50 splice site is positioned

in proximity to the two catalytic Mg2+ ions and the 50 exon

is aligned on the EBS1 loop (Figure 5a,b). Although in the

U2.U6.U5 complex U5 loop 1 is positioned similarly to
Current Opinion in Structural Biology 2016, 36:48–57 
EBS1 in the group II structures, the exon junction was not

observed in the U2.U6.U5 cryo-EM density, probably

because the mRNA has already been released [13�]. As a

result, the U6 metal ligands reorganize and the two Mg2+

ions are placed more than 7 Å apart [55��] — a significant

displacement from the 4 Å spacing preferred for phos-

phoryl transfer catalysis [64] (compare Figure 5c and a).

In the U2.U6.U5 spliceosomal complex the C-terminal

domain of Cwf19 (Cwf19L2 in human and no apparent

orthologue found in S. cerevisiae) fills the space between

the large and RNaseH-like domains of Prp8(Spp42),

inserting an extension of its Zn-finger domain into the
www.sciencedirect.com
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active centre [24��]. The C-terminal domain of S. cerevi-
siae protein Drn1 shows significant similarity to the C-

terminal domain of Cwf19. Its N-terminal domain is

known to interact with the debranching enzyme Dbr1

and Syf1(Cwf3) [65�]. It is tempting to suggest that Drn1

binds to Prp8(Spp42) in the post-splicing complex and

recruits Dbr1 to the lariat intron after spliced mRNA and

step 2 factors dissociate from the active centre.

U6 snRNA extends across U5 snRNA to the N-terminal

domain of Prp8(Spp42). Its 30 end forms a duplex with the

50 end of U2 snRNA. Bud31(Cwf14) bound to the N-

terminal domain of Prp8(Spp42) anchors the 50 end of U6

snRNA while Cwc2(Cwf2) is bound to the adjacent single

stranded region of U6 snRNA. Cwc2(Cwf2) promotes

formation of the group II intron-like structure of the

catalytic centre [8��,66,67]. In S. cerevisiae Bact and C

complexes Cwc2 cross-links with U6 snRNA internal

stem-loop (ISL) and G39 (G27 in S. pombe U6 snRNA)

upstream of the ACAGAGA sequence (Figure 3); in

human the Cwc2 orthologue RBM22 crosslinks with

the equivalent region of U6 snRNA [66]. G39 is in contact

with Cwc2(Cwf2) in the U2.U6.U5 spliceosomal complex

structure but Cwc2(Cwf2) is far away from U6 ISL

(Figure 3b and d). In the U2.U6.U5 spliceosomal complex

U6 ISL is exposed and could make contact with

Cwc2(Cwf2) if it is rotated. None of the step 2 factors

(Slu7, Prp18, Prp22) are found in this structure showing

that these proteins have already dissociated from the

complex [4,68]. Therefore the structure shows a number

of characteristics of the post-splicing ILS complex and it

is unlikely to be complex C or C*. Burke et al. [69] showed

by NMR and SAXS that U2/U6 does not spontaneously

form a group II intron-like RNA structure in isolation

even in the presence of Mg2+. The fact that in U2.U6.U5

spliceosomal complex the U2/U6 snRNA pair forms a

metal-binding triple helical structure (Figure 5c) implies

that once this structure has formed the active site cavity is

sufficient to maintain its integrity even in the absence of

step 2 factors and disruption of the interaction between

Cwc2(Cwf2) and U6 ISL.

Conclusions
The U4/U6.U5 tri-snRNP revealed the structure of the

spliceosome before activation and provided important

insight into the activation mechanism and the role of

Prp8 in formation of the active centre. The U2.U6.U5

spliceosomal complex structure most probably represents

the ILS complex after spliced mRNA release but still

retains some important characteristics of the active spli-

ceosome. It also provided a first glimpse of NTC and

NTR and how they interact with the spliceosomal

snRNPs. Much remains to be understood about the

different conformational states of this dynamic RNP

machine and how these states are regulated by trans-

acting ATPases. The recent cryo-EM structures have

paved the way for detailed structural analysis of the
www.sciencedirect.com 
spliceosome and the field can look forward to many

new exciting structures.
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