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Cryo-EM snapshots of the human spliceosome reveal

structural adaptions for splicing regulation™
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Introns are excised from pre-messenger RNAs by the
spliceosome, which produces mRNAs with continuous protein-
coding information. In humans, most pre-mRNAs undergo
alternative splicing to expand proteomic diversity. Cryo-
electron microscopy (cryo-EM) structures of the yeast
spliceosome elucidated how proteins stabilize and remodel an
RNA-based active site to effect splicing catalysis. More recent
cryo-EM snapshots of the human spliceosome reveal a
complex protein scaffold and provide insights into the role of
specific human proteins in modulating spliceosome activation,
splice site positioning, and the ATPase-mediated dynamics of
the active site. The emerging molecular picture highlights how,
compared to its yeast counterpart, the human spliceosome has
coopted additional protein factors to allow increased plasticity
of splice site recognition and remodeling, and potentially to
regulate alternative splicing.
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Introduction

T'ranscripts from most mammalian genes are synthesized
as precursor mRNAs (pre-mRNAs), from which non-
coding introns are spliced out [1,2]. Introns allow a single
gene to encode multiple protein isoforms with distinct
activities, thus expanding proteomic diversity through
alternative splicing [3]. Indeed, splicing modulates tran-
scription, export, localization, translation, and the stability
of mammalian transcripts [4].

% [ dedicate this review to the memory of Kiyoshi Nagai (1949-2019)

L))

Check for
updates

To excise introns, the spliceosome assembles #¢ #ovo on
each pre-mRNA through protein and RNA interactions
that recognize the splice sites. Following assembly, the
splice sites dock at an RNA-based active site that pro-
duces mRNA by catalyzing two sequential transesterifi-
cations — branching and exon ligation (Figure 1a) [5°°]. In
the last five years structures of the spliccosome from the
budding yeast Saccharomyces cerevisiae have rationalized
decades of biochemistry and genetics and provided a
molecular view of the basic mechanism of splicing, show-
ing how specific factors promote splice site recognition
and catalysis [5°°,6-8]. Whereas in yeast very few pre-
mRNAs contain introns and only a handful are alterna-
tively spliced [9], in humans alternative splicing occurs in
94% of genes [2] and the spliceosome has adapted to act
on pre-mRNAs with multiple introns. Although the core
of the spliceosome is conserved in higher eukaryotes,
cryo-EM structures have also shed light on the increased
complexity of the mammalian spliccosome [1]. This
review focuses on how additional z7ans-acting factors that
associate with human spliceosomes modulate splice site
recognition and dynamics of the conserved spliceosome
core.

A regulated assembly pathway

During initial assembly, the U1 snRNP pairs with the 5'-
splice site (5'SS) to form the E complex (Figure 1a—c), in
which the branch point adenosine (BP) and the 3’ end of
the intron are also recognized cooperatively by binding of
the trans-acting factors SF1 and U2AF [1,10]. In mam-
mals this assembly step is regulated by the strength of
UZAF interactions with a stretch of pyrimidines preced-
ing the 3'splice site (3'SS), termed the polypyrimidine
(Py) tract. Indeed, U2AF binding determines the effi-
ciency of subsequent A complex formation [11], during
which the U2 snRNP pairs with the intron around the BP
adenosine to form the branch helix (Figure 1). The
transition from the E to the A complex is mediated by
Prp5 and UAP56, two ATPases with potential RNA
helicase activity, whose mechanism of action remains
largely obscure in mammals but which likely remodel
the U2 snRNP and proofread BP recognition, as is the
case of Prp5 in yeast [12,13]. A recent structure of the free
human 17S U2 snRNP provides the molecular basis for
understanding how Prp5 and the transcription elongation
factor TAT-SF1, which binds the U2 snRNP, can modu-
late initial BP recognition [14]. The structures of the yeast
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Splicing pathway. The names of specific spliceosome complexes were initially derived from their order of observation on native assembly gels. (a)
Conceptual cartoons of key steps in spliceosome assembly and splicing catalysis. (b) Structures of key spliceosome complexes in yeast: E
complex, PDB 6N7P [15]; A complex, PDB 6G90 [16]; U4/U6-U5 tri-snRNP, PDB 5GAN [26]; pre-B complex, PDB 5ZWM [27]; B complex, PDB
5NRL, [56]; B®** complex, PDB 5GM6 [57]; C complex, PDB 5LJ5 [50], P complex PDB 6EXN [44]; ILS complex PDB 5Y88 [48]. (c) Structures of
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E and A complexes provide molecular clues about initial
splice site recognition, suggesting how dynamic interac-
tions between the U1l and U2 snRNPs govern A complex
assembly and how additional trans-acting factors may
regulate this process [15,16]. However, in mammals,
the UZ and U1 snRNPs from adjacent introns are thought
to interact across an exon in a process called exon defini-
tion [17], which has been proposed to control alternative
splicing decisions [18], though some genome-wide stud-
ies suggest exon definition may only affect a subpopula-
tion of introns [19,20]. Early recognition events and
transition from E to A complex are further regulated in
mammals by many RNA-binding proteins, which control
alternative splicing [21]. Understanding how such factors
regulate assembly of the A complex in molecular detail
remains one of the foremost future challenges in the
structural study of splicing.

By contrast, the molecular events following A complex
formation are becoming increasingly clear. The A com-
plex recruits a pre-formed U4/U6-U5 tri-snRNP, in which
the Prp8 protein constitutes the core scaffold of the
spliceosome (Figure 2). In the tri-snRNP, U6 snRNA,
which will form the active site [22], is held in an inactive
conformation through base-pairing with U4 snRNA. The
helicase Brr2 unwinds these U4/ U6 interactions at a later
stage. In humans, the tri-snRNP contains the DEAD-box
helicase Prp28, which engages the Ul snRNP and is
required for formation of the fully assembled spliceosome
pre-B complex (Figure 1) [23,24°°]. Indeed tri-snRNP
association in humans is regulated by phosphorylation of
Prp28 [25]. As in yeast, association of the U2 snRNP is
stabilized at this stage by the newly formed U2/U6 stem
IT (Figure 1b,c). In yeast, the helicase Brr2 has already
engaged its U4 snRNA substrate in the tri-snRNP and is
thus poised for unwinding in the pre-B complex [26,27].
In contrast, human Brr2 is held in an unengaged position
in the tri-snRNP by Sad1, which may repress premature
Brr2 unwinding of U4/U6 interactions [5°°] (Figure 1).
Brr2 remains unengaged in the pre-B complex, resulting
in a more mobile UZ snRNP that does not appear to stably
contact the U1l snRNP. Such plasticity may promote Ul
snRNP engagement with the tri-snRNP body thus prim-
ing the spliceosome for transition into the pre-catalytic B
complex. In yeast, by contrast, Prp28 is not stably bound
to the tri-snRNP and in pre-B may only interact with the
U1l snRNP, though it remains unclear whether the
absence of a stably engaged Prp28 in the yeast pre-B
complex reflects a genuinely different assembly pathway
[5°°,24°°]. Regardless, ATP-driven Prp28 action causes
dissociation of U1 snRNP and 5’SS transfer from U1 to U6
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snRNA (Figure 1), allowing Prp28 to proofread 5'SS
recognition in humans, as in yeast [28]. In humans, this
transition is further regulated by the Prp4 kinase, which
phosphorylates core components of the tri-snRNP [29]. In
the resulting B complex, BrrZ2 is now relocated and
engaged on U4 snRNA, as in yeast. Importantly, the B
complex is a key intermediate before formation of the
active site, as even complexes that may initially assemble
across an exon at the A complex stage proceed through a B
complex conformation across the intron [30].

Brr2 remodels the B complex by unwinding U4/U6 inter-
actions, thus inducing dissociation of the U4 snRNP. In
humans, premature Brr2-mediated unwinding may be
prevented by FBP21, which bridges Brr2 to the U4
snRNP and may regulate alternative splicing [31,32°°
,33]. Remodeling of the B complex assembled on short
introns is further modulated by Smul and RED, two
additional factors which bridge Brr2 and the U2 snRNP
(Figure 1) [31,32°°,34].

Brr2 action allows formation of the B** complex, in which
the freed U6 snRNA pairs with U2 snRNA to fold into a
triple helix that constitutes the active site of the spliceo-
some and positions two catalytic Mg”* ions (Figure 1)
[5°%,22,35]. During this transition, a large complex of
Prp19 and associated factors (termed N'TC) engages
the spliceosome in a step-wise manner, followed by
further remodeling mediated by the association of the
intron-binding complex (IBC) comprising the mamma-
lian helicase Aquarius, which is required for spliceosome
activation [36,37°%,38°°]. Cryo-EM snapshots of different
B*‘ conformations suggest that the NTC and IBC
undergo extensive dynamic rearrangements [36,37°°],
likely to promote productive docking of the 5'SS at the
newly formed active site, which occurs in B*" (Figure 1).
Indeed, stable integration of Prp17, which remains bound
throughout catalysis, appears coupled to binding of IBC
in the mature B*** complex [36,37°°]. The docked 5'SS is
stabilized, as in yeast, by specific protein factors and by
binding of the 5'-exon onto Loop I of U5 snRNA [1,5°°].
In mammals the path of the 5'-exon is further guided by
the SR protein Srm300, which is the largest single poly-
peptide in the spliceosome [39]; though mostly disor-
dered Srm300 remains associated throughout the catalytic
stage (Figure 1c) and may regulate splicing of specific
transcripts [40].

During the final steps of spliceosome activation, Prp2
activity extensively remodels the B** complex to pro-
mote exchange of factors and juxtaposition of the BP

(Figure 1 Legend Continued) key spliceosome complexes in humans: 17S U2 snRNP, PDB 6Y5Q [14]; U4/U6-U5 tri-snRNP, PDB 6QW6 [24°°;
pre-B complex, PDB 6QX9 [24°*]; B complex, PDB 6AHD [31]; B**' complex, PDB 5256 [36]; C complex, PDB 5YZG [42]; P complex, PDB 6QDV
[45°°]; ILS complex, PDB 6ID1 [46]. Note that no structures of the human E and A complexes have been reported to date. The B* and C*
complexes adopt the same conformation as the post-catalytic C and P complexes, respectively, and were omitted for clarity. ATP indicates the

activity of a specific DEAH/D-box helicase.
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Rearrangements of Prp8 mobile elements mediate association of step-specific factors during spliceosome assembly and catalysis. (a) Relative
arrangement of Prp8 domains in the U4/U6-U5 tri-snRNP: N, N-terminal domain; EN, endonuclease domain; RH, RNaseH-like domain; RT,
reverse-transcriptase-like domain; Jab, Jab1/Mpn-like domain; L, linker domain[24°°,49]. Boundaries for the three key loop regions are indicated.
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adenosine to the 5’'SS, which is then stabilized by branch-
ing factors (Figure 1) [1,5°°]. The resulting B* complex
effects branching by catalyzing attack of the 5'SS by the
BP adenosine, thus cleaving the 5'exon (Figure 1) [5°°].
Following branching, a complex specific to higher eukar-
yotes termed the Exon-Junction Complex (EJC) is stably
recruited to the 5'-exon through interactions with Cwc22
in the C complex [1,5°°], although its components may
already loosely bind the B** complex [37°%,41]. The EJC
is important for mRNA stability and for translation quality
control [4]. Several peptidyl-prolyl isomerases also asso-
ciate with the C complex [42] (e.g. PPI, Figure 1), though
their functions remain unclear. Following branching, the
ATPase Prp16 rearranges the C complex into a new C*
conformation (Figure 1), which allows docking of the 3'-
splice site (3/SS) [43,44]. In mammals several additional
factors not observed in yeast promote the C* conforma-
tion [45°°], as detailed below. The C* complex catalyzes
attack of the cleaved 5'-exon on the 3’SS to effect exon
ligation and is converted to the post-catalytic P complex,
from which the ATPase Prp22 releases the mRNA bound
to the EJC (Figure 1c). In the resulting intron-lariat
spliccosome (ILS) the excised intron is bound by
Cwf19L.2 [46], the human homolog of yeast Drnl, an
auxiliary factor that in yeast recruits the Dbrl debran-
chase to initiate degradation of the intron [47]. The
A'TPase Prp43 binds the ILS and dissociates the spliceo-
some to allow snRNP recycling. Although the yeast ILS
structure reveals how Prp43 may be recruited by auxiliary
factors such as Ntrl [48], the published human ILS
structure lacks such factors [46], suggesting human spli-
ceosome disassembly may be more complex.

Prp8 dynamics mediate association of trans-
acting factors

Prp8 forms the core scaffold of the spliceosome from the
pre-B complex onwards and the active site is cradled
between its endonuclease (EN), linker (L), and reverse-
transcriptase-like (R'T") domains (Figure 2a,e) [5°%,49,50].
Cryo-EM structures of the human spliceosome reveal
how two mobile regions — the Switch loop and the
a-finger — that protrude from the Linker domain coop-
erate with the B-finger of the RNaseH-like domain
(Figure 2a) to mediate association of step-specific factors
during assembly, activation, and catalysis.

In the tri-snRNP and pre-B complex, the Switch loop abuts
the Prp8 EN domain, thus stabilizing binding of Prp31, a
U4 snRNP protein, which rigidifies the tri-snRNP
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assembly together with Prp6, whose N-terminus latches
onto the Prp8 B-finger (Figure 2b). The a-finger interacts
with Prp31 and Dim1 to hold in place U4/U6 stem I, thus
priming the U6 snRNA to engage the 5'SS in the B complex
(Figure 2c¢). Indeed, only the position of the Prp8 B-finger
changes from the pre-B to the B complex, where it interacts
with Snu66 (Figure 2c¢), a factor that also helps to stabilize
U4/U6 stems I and III in pre-B and may thus couple 5'SS
transfer to U6 with spliceosome activation [5°°,24°°] (see
also below). Reflecting dynamics of the B** complex, the
Prp8 a-finger becomes partly disordered following activa-
tion but is likely positioned to serve as a nexus of interac-
tions, binding RNF113A (hCwc24) to promote docking of
the 5'SS near the active site but also potentially linking
SE3B1 of the repositioned UZ snRNP to Bud13 of the RES
complex (Figure 2d). Since both SF3b and RES complexes
dissociate following Prp2 activity [1], the Prp8 a-finger may
act as a relay to promote Prp2-induced remodeling. The
Switch loop also swings almost 180° from the B to the B**
complex (Figure 2c¢,d), where it remains throughout final
activation and catalysis and clamps onto Srm300 to stabilize
binding of the 5'-exon onto U5 snRNA Loop I between the
Prp8 L and EN domains.

The relative orientation of Prp8 domains changes during
final activation, as the RH domain engages the EN
domain throughout the catalytic stage (Figure 2e—g). In
the C complex, the Prp8 a-finger and B-finger stabilize
the branch helix in its branching conformation, with the
a-finger promoting binding of CCDC49 (hCwc25) to
clamp on the branch helix (Figure 2f). Then, in the C¥
and P complex, the a-finger and B-finger act as pincers to
rigidify the repositioned branch helix and clamp the
docked 3'SS in the active site during exon ligation
(Figure 2g). Finally, in the post-catalytic ILS complex,
the a-finger and B-finger clamp onto Cwf19L.2, a factor
that is also observed in the Schizosaccharomyces pombe 11.S
and promotes spliceosome disassembly and intron degra-
dation (Figure 2h) [46]. Notably, in the ILS complex, the
Prp8 Switch loop returns to its original position abutting
the EN domain, ready to re-form the tri-snRNP after
spliceosome disassembly.

Specific human proteins modulate splice site
recognition

Although splice site recognition and selection is generally
believed to occur mainly in the E and A complexes [3,21],
the human spliceosome structures suggest that selection
of splice sites can also occur later during assembly, and

(Figure 2 Legend Continued) (b) Three Prp8 regions stabilize U4/U6 helices in the pre-B complex. (c) Prp8 interactions in the B complex. Note
engagement of the Prp8 B-finger by Snu66, which may regulate spliceosome activation [24°°]. (d) The Switch loop of Prp8 engages Srm300 to
stabilize binding of the 5'-exon at the active site in the mature B** complex [36]. (e) Relative orientation of Prp8 domains during the catalytic
stage. (f) The Prp8 a-finger and B-finger stabilize the branch helix during catalysis of branching. (g) The Prp8 a-finger and B-finger act as pincers
to rigidify the docked 3'SS in the active site during exon ligation. (h) The Prp8 a-finger and B-finger stabilize Cwf19L2 binding to the excised
intron. Note that in the ILS complex the Prp8 Switch loop returns to its original position abutting the Prp8 EN domain, ready to re-form the tri-

snRNP after spliceosome disassembly.
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Specific human protein factors modulate splice site recognition during assembly and catalysis. (a) Different conformations of the U6 snRNA
ACAGAGA in yeast and human pre-B complexes. Note that the ACAGAGA box forms a stem loop in the yeast pre-B complex and is not ready to
stably engage the 5’SS. (b) Human proteins prime the U6 snRNA in the pre-B complex for engagement with the 5’SS. Similarly, Prp28 is engaged
in the human pre-B complex and primed to transfer the 5'SS to U6 snRNA. (c) The U6 ACAGAGA does not engage the 5'SS productively in the
yeast B complex. (d) FBP21 stabilizes the productive helix between the U6 ACAGAGA and the 5'SS, while UBL5 clamps the 5’-exon onto U5
snRNA Loop I. (e-f) The conformation of the active site during branching is conserved from yeast to humans. Note that similar human branching
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during catalysis. Indeed, most of the ATPases that act on
the pre-B, B*, C, and P complexes have been implicated
in proofreading splice site choice [5°%,6].

While Prp8 rearrangements are conserved, human and
yeast spliceosomes differ in their initial recognition of the
5'SS in the pre-B complex and its transfer to the U6
snRNA ACAGAGA box in the B complex, a process
mediated by specific human proteins. In yeast the
5'SS/ U1l snRNA pairing is still stabilized by Luc7 in
pre-B [27], whereas in humans Prp28 has already engaged
the 5SS/ U1 helix in at least a subset of pre-B complexes
(Figure 3a,b) [24°°]. More importantly, the U6 snRNA
ACAGAGA forms a stem-loop in the yeast pre-B and B
complexes, whereas in humans the ACAGAGA is flexible
at the pre-B stage but has already paired with the 5'SS in
the B complex, an interaction stabilized by FBP21
(Figure 3c,d). Indeed, by stabilizing the human-specific
U4/ U6 stem III in pre-B, RBM42 and SNRNP-27K
prime the ACAGAGA in a flexible conformation to
receive the 5SS [5°°,24°°]. These differences allow the
human spliceosome to uncouple 5SS transfer to U6
snRNA, which occurs early, in the B complex, from
unwinding of U4/ U6 and formation of the active site
in B*“. In contrast, in yeast, pairing of the 5'SS to the
ACAGAGA box occurs later and is coupled to formation
of the active site during transition to B** [5°%,24°°]. This
mechanism may allow usage of alternative 5'SS in mam-
mals, which accounts for 8% of in-frame alternative
splicing events in humans [51]. Consistently, SNRNP-
27K was shown to regulate 5'SS usage in Caenorhabditis
elegans [52]. In humans, 5'SS transfer is instead accompa-
nied by binding of the 5'-exon onto U5 snRNA Loop I
(Figure 1a) [5°°,24°°]. Indeed, in the B complex the 5'-
exon is stabilized onto Loop I by the ubiquitin-like UBLS5
(Figure 3d), which may further modulate splice site
choice similarly to its yeast homolog Hub1 [9].

While human factors promote plasticity of 5'SS recogni-
tion, after final activation, the yeast and human spliceo-
somes have a strikingly similar structure of the active site
as well as the same complement of branching factors to
stabilize the juxtaposed BP and 5'SS in the B* and C
complexes (Figure 3e,f). By contrast, subsequent remo-
deling to the C* conformation allows increased flexibility
during docking of the 3’SS in humans. The human C*
complex is stabilized by several additional factors includ-
ing PRKRIP1, which rigidifies the branch helix [45°°,53],
and Cactin and Sde2, which have been implicated in
alternative splicing in S. pombe [45°°]. Cactin partly sub-
stitutes for the N-terminal domain of Yju2, which stabi-
lizes the yeast C* and P complexes (Figure 3g,h)
[44,45°°]. Cactin is also positioned to modulate docking
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of the 3'SS through interactions with the polypyrimidine
tract (Figure 3h) and a recent genome-wide study impli-
cates the polypyrimidine tract in controlling exon ligation
of a subset of human introns [20]. Finally, whereas in
yeast 3’SS docking is promoted by Prp18, in humans
Prp18 is partly substituted by FAM32A (Figure 3h),
which binds the 5'-exon in C* to promote exon ligation
and has been implicated in splicing of a subset of pre-
mRNAs [45°°]. Thus several human factors have the
potential to modulate 3'SS choice during exon ligation,
which may emerge as a major regulatory step since 20% of
in-frame alternative splicing events involve a choice
between alternative 3’SS situated only a few nucleotides
apart and which are unlikely to be discriminated by UZAF
during initial assembly [51].

Specific human remodeling chaperones

In addition to conserved ATPases that mediate spliceo-
some remodeling in both yeast and humans, several
additional A'TPases associate with the human spliceo-
some [10,54]. Of these, only Aquarius — a large SF1
family helicase — has been observed in spliccosome
structures thus far. Aquarius associates in the IBC with
the cyclophilin CypE, the NTC-interacting Syfl, and
with human Isyl (hlsyl) [38°°] and may cooperate with
these factors as a general chaperone for human spliceo-
some remodeling.

The IBC joins the spliceosome at the B** stage following
formation of the active site triplex (Figure 1) [38°%,55].
A'TP hydrolysis by Aquarius, but not RNA unwinding, is
required during the B*** to C transition, suggesting Aquar-
ius may remodel RNA-protein interactions instead of
acting as an RNA helicase [38°°]. Consistently, reposi-
tioning of the branch helix during remodeling of B** by
Prp2 dissociates SF3a and SF3b complexes (Figure 1b,c)
and Aquarius may assist in this process through interac-
tions mediated by CypE with SF3A2, which binds the
branch helix (Figure 4a). In the resulting C complex,
Aquarius binds the intron downstream of the U6/ 5SS
helix, while CypE engages the intron upstream of the
branch helix, which is clamped into the active site by the
IBC component hlsyl (Figure 4b). Thus Aquarius may
serve as a ribonucleoprotein chaperone by threading the
intron to promote juxtaposition of the 5SS and BP in the
B* and C complex (Figure 4a,b), consistent with Aquarius
being necessary for branching [38°°]. Subsequently, hlsyl
disengages the spliceosome core and becomes disordered
in the C* and P complex, where stable density was only
observed for the repositioned Syfl and Aquarius
(Figure 4c) [45°°,53]. Indeed, Aquarius activity is not
required during exon ligation [38°°]. Intriguingly, CypE
re-engages the intron upstream of the branch helix in the

(Figure 3 Legend Continued) factors stabilize the branch helix near the catalytic Mg®*. (g-h) Additional exon ligation factors stabilize the P
complex conformation in humans. Note how in humans FAM32A partially substitutes for Prp18 near the docked 3'SS.
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The ATPase Aquarius and its associated intron-binding complex (IBC) modulate spliceosome rearrangements in humans. (a) Aquarius and CypE
may chaperone B! remodeling by the Prp2 ATPase. Note that Prp2 action dissociates the SF3a and SF3b complexes and Aquarius may assist in
this process through interactions mediated by CypE with SF3A2. (b) Interactions with CypE and Aquarius may drive the intron and branch helix
into the C complex active site. (c) Aquarius may promote engagement of Syf1 with the repositioned U2 snRNP core during the C to P transition.
(d) Aquarius and CypE may assist recruitment of Prp43 to mediate disassembly of the post-catalytic ILS complex and release of the excised

intron.

post-catalytic ILS and may modulate recruitment of
Prp43 for spliceosome disassembly (Figure 4d) [46],
suggesting that the IBC may also act as chaperone during
human spliceosome disassembly.

Future perspectives

Cryo-EM snapshots have provided unprecedented
molecular insights into splice site recognition and cataly-
sis by the human spliceosome. However, many human
factors detected by mass spectrometry have not yet been
identified in any spliceosome structure and their roles
remain largely obscure, raising the possibility that such
factors may engage the spliceosome in a transcript-spe-
cific manner. The challenge for the next decade of
spliceosome structural biology will be to understand
how these specific human proteins mediate remodeling,
proofreading of splice site choice, and alternative splicing
for individual human transcripts.
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