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During eukaryotic gene expression, genes are first transcribed into 
pre-messenger RNAs (pre-mRNAs), in which the coding informa-
tion (represented by exons) is interrupted by introns. To produce 
mature messenger RNAs (mRNAs) with an uninterrupted protein 
coding sequence, introns are excised from pre-mRNAs by two sequen-
tial phosphoryl-transfer reactions—branching and exon ligation1–4 
(Fig. 1a). During branching the 2′ hydroxyl of a conserved adenosine, 
called the branch point (BP), attacks a phosphate at the 5′ splice site 
(5′-SS) to produce a free 5′ exon and a lariat intron–3′ exon intermedi-
ate, whereas during exon ligation the new 3′ hydroxyl group of the 5′ 
exon attacks a phosphate at the 3′ splice site (3′-SS) to ligate the exons 
and release the lariat intron. These reactions are chemically simple but 
catalyzed by a dynamic ribonucleoprotein enzyme, the spliceosome, 
which is comprised of five small nuclear RNAs (snRNAs) and over 70 
proteins in yeast. The spliceosome is not a preformed enzyme, and the 
active site is created only after the spliceosome, which is assembled on 
pre-mRNA from many components, has undergone extensive confor-
mational and compositional changes5,6 (Figs. 1b and 2). Because of its 
dynamic nature, understanding the molecular mechanism of splicing 
has been an enormous challenge for structural biologists.

The spliceosome assembles de novo on each intron of the pre-mRNA 
in a stepwise manner from individual small nuclear ribonucleopro-
tein particles (snRNPs) that are composed of snRNA and associated 
proteins5,6. Five snRNPs (U1, U2, U4, U5 and U6 snRNPs), named 
after their snRNA component, associate with a pre-mRNA (Fig. 1b). 
Several key RNA-recognition and remodeling events occur during 
activation, in addition to numerous changes in protein composition, 
to create the active site5,6. Four decades of biochemical and genetic 
studies have established a series of assembly and remodeling steps that 
underlie the precise functioning of this intricate molecular machine. 
The U1 and U2 snRNPs first pair with the 5′-SS and the BP of the  

pre-mRNA, respectively7–10, which leads to formation of the A com-
plex11 (Fig. 1b). Assembly then proceeds with association of the 
U4/U6–U5 tri-snRNP11 (Figs. 1b and 2), in which the U6 snRNA is 
extensively base-paired with the U4 snRNA12. In the resulting pre-B 
complex, the U1 snRNP remains bound to the 5′-SS; however, the 
ATPase Prp28 promotes dissociation of the U1 snRNP13 to form a 
stable B complex14 (Figs. 1b, 2 and 3a). To enable catalytic activation, 
the ATPase Brr2 dissociates the U4 snRNA15,16, which allows the U6 
snRNA to adopt a catalytically active structure together with the U2 
snRNA17 and to pair with the 5′ end of the intron18,19 (Figs. 3b and 4).  
Elucidation of base-pairing between the U6 and U2 snRNAs and the 
pre-mRNA revealed RNA elements that are structurally similar to 
those present in group II self-splicing introns20,21, suggesting that 
their active sites might be structurally similar (Fig. 4). The Bact com-
plex, which contains the U2, U5 and U6 snRNAs, forms after the  
B complex is remodeled by Brr2 and stabilized by a complex of pro-
teins associated with Prp19 (termed the NTC), together with NTC-
related factors22–24 (Figs. 2 and 5). The ATPase Prp2 then promotes 
the binding of branching factors and juxtaposition of the 5′-SS and the 
BP for branching25–27 (Figs. 3 and 4). The resulting B* complex cata-
lyzes branching to form the C complex (Figs. 2, 3c and 4e). After the 
first catalytic reaction, the ATPase Prp16 remodels the spliceosome 
to allow dissociation of the branching factors28,29 and enable docking 
of 3′-SS into the active site27,30 with the help of exon ligation fac-
tors31. The 5′ and 3′ exons are aligned by the U5 snRNA32,33, and the 
resulting spliceosomal C* complex performs the second catalytic step  
(Figs. 1, 2 and 4). The ATPase Prp22 then releases the mRNA34,35, 
and the ATPases Prp43 and Brr2 disassemble the spliceosome36,37 
(Figs. 1 and 2).

A cryo-EM revolution
Crystal structures of key protein components—such as Prp8 (refs. 38–42)  
and Brr2 (refs. 43–46), the Sm47 and LSm48 protein complexes, the 
Snu13–Prp31–U4 snRNA complex49, the SF3a (ref. 50) and SF3b  
(ref. 51) complexes, and the functional core of the U1 snRNP52–54—
have provided structural insights and complemented the functional 
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The spliceosome excises introns from pre-messenger RNAs using an RNA-based active site that is cradled by a dynamic 
protein scaffold. A recent revolution in cryo-electron microscopy (cryo-EM) has led to near-atomic-resolution structures of 
key spliceosome complexes that provide insight into the mechanism of activation, splice site positioning, catalysis, protein 
rearrangements and ATPase-mediated dynamics of the active site. The cryo-EM structures rationalize decades of observations from 
genetic and biochemical studies and provide a molecular framework for future functional studies.
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studies. However, an in-depth mechanistic understanding of spliceo-
some catalysis and dynamics requires high-resolution structures of 
fully assembled spliceosomes.

Previous negative-stain and cryo-EM studies of spliceosomes and 
spliceosomal snRNPs had revealed their overall shapes at low reso-
lution and the location of some specific tagged components55–61.  
Recent advances in cryo-EM data acquisition and processing  
have ushered in a so-called ‘resolution revolution’ that has allowed 
structures of heterogeneous macromolecular assemblies to be deter-
mined to near-atomic resolution62. In the past two years three labo-
ratories have applied the new EM methods to the structural study  
of the spliceosome. The outcome has been a series of near-atomic-
resolution snapshots of fully assembled spliceosomes captured at key 
steps along the splicing pathway that are now allowing an unprec-
edented molecular view of the splicing cycle (Fig. 2).

Assembly and activation of the spliceosome
The U1 and U2 snRNPs recognize the 5′-SS52,53 and BP of a pre-
mRNA, leading to formation of the A complex, which associates with 
the U4/U6–U5 tri-snRNP to form the fully assembled pre-B com-
plex14 (Fig. 1b). Following Prp28-dependent U1 snRNP release and 
association of the B complex proteins, the pre-B complex is converted 
to the stable B complex14 (Figs. 1b, 2, 3a and 5), which subsequently 
undergoes an extensive rearrangement of the RNA components, as 
well as changes in protein composition63, to become the catalytically 
activated Bact complex (Figs. 2, 4d and 5). The structures of the B 
(ref. 64) and Bact (refs. 65,66) complexes provide a first glimpse into 
the activation mechanism (Fig. 5). In the B complex, the U2/U6 helix 
II, which is formed between the 5′ end of the U2 snRNA and the 3′ 

end of the U6 snRNA, holds the U2 snRNP and tri-snRNP firmly 
together in addition to more flexible interactions between the pro-
tein components of U4/U6–U5 tri-snRNP and the U2-snRNP-bound 
pre-mRNA64 (Figs. 2 and 5). The conserved UACUAAC sequence 
around the BP of the pre-mRNA pairs with the U2 snRNA to form the 
branch helix within the context of the U2 snRNP (Figs. 3a and 6a).  
The HEAT repeats in Hsh155, a component of the SF3b complex, 
binds the branch helix (Fig. 3a). The active site of the N-terminal 
helicase cassette in Brr2 is bound to the single-stranded region of the 
U4 snRNA and is poised to translocate along U4 snRNA and unwind 
the U4/U6 snRNA duplex (Fig. 5). A U6 snRNA hairpin contain-
ing the ACAGAGA 5′-SS binding region, which is stabilized by Dib1  
in the structure of free tri-snRNP (refs. 67–69), is further stabilized by 
B complex proteins and now weakly interacts with the 5′-SS (Figs. 2  
and 5). This suggests that in yeast, in the absence of NTC proteins, 
Prp28 activity is not sufficient for stable U6 exchange at the 5′-SS, con-
sistent with functional studies13,23. Nonetheless, B complex proteins 
stabilize this initial 5′ exon tethering and, through interactions with 
Brr2, may couple initial weak recognition of the 5′-SS to Brr2 activation 
and U4/U6 unwinding. Although it is still base-paired with U4, the 
U6 snRNA already forms the U2/U6 helix II in the B complex (Fig. 5),  
a structure that likely primes the U6 and U2 snRNAs to fold into 
the catalytically active RNA structure when the U6 snRNA is freed 
from the U4 snRNA by Brr2 action64. During this process at least 
24 proteins (including the U4/U6–U5 tri-snRNP and the B complex 

AGU AG pre-mRNA

5′ splice 
site

3′ splice 
site

BP

E complex

A complex

Prp5
UAP56/ Sub2

B complex
(pre-catalytic)

U4/U6–U5
tri-snRNP

Prp28

pre-B
complex

Brr2

mRNA

Intron

B* complex
(catalytic pre-branching)

C complex
(catalytic post-

branching)

P complex
(post-splicing)

Exon 
ligation

Prp22

Prp43

Prp16

Brr2 ?

C* complex
(catalytic pre-
exon ligation)

Bact complex
(activated)

ILS 

a 5′ splice 
site

Branching

3′ splice 
site

3′-splice site 
docking

3′OH

BP-A
A

A

A

O
O

O

O

P

2′OH

3′OH

A

O
O

O

O

P

Exon 
ligation

mRNA

b

Prp2
Branching

U1

U1

U1

U2

U4

U5
U6

NTC

U2 U4

U5

U6

U2

U1

U1

U2 U4

U5

U6

U4 U5
U6

U2

NTC

U6

U2

U5

NTC

U5
U6

U2

NTC

U5
U6

NTC

U5
U6

NTC

U2

U5
U6

NTC

U2

U5
U6

NTC

U2

U2

Figure 1  A functional view of the splicing cycle. (a) Two-step mechanism 
of pre-mRNA splicing. (b) Assembly and catalytic cycle of the spliceosome.
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proteins) dissociate from, and numerous NTC and NTR proteins join, 
the spliceosome63 (Figs. 2 and 5).

The active site of the spliceosome, which is reminiscent of the group 
II intron active site20,21, is fully formed during the transition of the 
B complex to the Bact complex, and it remains unchanged during the 
two phosphoryl-transfer reactions (Fig. 4d–f). The 5′-SS is correctly 
positioned in the active site owing to the pairing between the 5′ end 
of the intron and the U6 snRNA ACAGAGA sequence18,19, as well as 
to the tethering of the 5′ exon to the U5 snRNA loop 1 (refs. 32,33)  
(Fig. 4a). The 5′ exon is further clamped together with Cwc21 
between the N-terminal and linker domains of Prp8 when the U5 
snRNP foot domain undergoes a rotation, which may be induced by 
the dissociation of B complex proteins and initial unwinding of the 
U6 ACAGAGA stem. The Bact complex is kept inactive by the U2 
snRNP SF3b subcomplex, which encircles the BP and sequesters the 
branch helix more than 50 Å away from the catalytic Mg2+ ions65,66  
(Figs. 3b, 4d and 5). The overall architecture of the Bact complex is 
held together by the NTC (Figs. 2 and 5), whose components function 
as a multipronged clamp that restrains the many intricate RNA inter-
actions that are crucial for catalysis. Indeed, specific NTC-associated 

factors, such as Cwc24, replace B complex proteins (Fig. 2) and seem 
to regulate recognition of the 5′-SS and its docking at the catalytic 
Mg2+ site; functional studies have further confirmed the importance 
of such factors in the stabilization of the Bact complex before Prp2 
activity70. Together the B and Bact structures reveal key transitions 
of the snRNAs during formation of the active site, and they provide 
a molecular basis for understanding the role of the NTC and NTR 
proteins in spliceosome activation (Fig. 5).

The active site
Cryo-EM structures of the Saccharomyces cerevisiae C complex71,72 
have revealed the structure of the active site in a catalytically active 
spliceosome that is bound by the products of the first phosphoryl-
transfer reaction (branching), a free 5′ exon and a lariat–3′ exon inter-
mediate (Figs. 2 and 4). The U6 snRNA forms an intramolecular 
stem-loop (ISL) structure and helices Ia and Ib with the U2 snRNA, 
as first demonstrated by elegant genetic experiments17. This pro-
duces a highly twisted backbone of the bulged nucleotides of the ISL, 
which together with the backbone of the U6 catalytic triad (A59, G60 
and C61) forms binding sites for two catalytic magnesium ions, as  
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proposed by the two-metal ion mechanism73 (Fig. 4a,b). Indeed,  
the catalytic Mg2+-coordinating phosphate oxygens that were iden-
tified by metal-rescue experiments are in perfect agreement with  
the Mg2+ ligands observed in the structure74,75. The bases of A53, 
G52 and U80 form three consecutive triple base pairs76 with U6/U2 
helix Ib involving the catalytic triad (A59, G60 and C61), and the 
stacking of these triple base pairs (A53, G52 and U80) stabilizes the 
folded RNA structure, as observed in the active site of the group II 
intron20,21 (Fig. 4b).

As a result of the branching reaction, the substrate pre-mRNA is 
cleaved at the 5′-SS, and the 5′ phosphate of the first intron nucleotide 
(G+1) forms a new 2′-5′ phosphodiester bond with the 2′ hydroxyl 
group of the BP adenosine to produce a lariat intron structure (Figs. 1a  
and 4c). In the C complex, both the 3′ hydroxyl group of the 5′ exon 
and the 5′ phosphate of the first intron nucleotide remain close to 
the catalytic Mg2+ ions, suggesting that the configuration of the B* 
complex active site (before branching) can be restored readily with 
minimal structural changes. The 5′ exon is tethered by the conserved 

loop 1 of the U5 snRNA, as first demonstrated by genetic and cross-
linking experiments32,33. The first six intron nucleotides (GUAUGU) 
are stringently conserved in yeast, and the Watson-Crick and non-
Watson-Crick base pairs between this hexanucleotide and the U6 
snRNA ACAGAGA box are able to position the 5′-SS in the active 
site70,71 (Fig. 4a). In yeast the pre-mRNA sequence around the BP 
adenosine is conserved to be UACUAAC (where A denotes the BP 
adenosine), and this sequence pairs with the U2 snRNA to form the 
branch helix with the bulged BP adenosine10. The base of the BP 
adenosine (A70 in the UBC4 pre-mRNA) is flipped out and inter-
acts with the surrounding protein residues in the B and Bact com-
plexes63–65, whereas in the C complex it forms hydrogen bonds with 
the U68 base to create an unusual backbone structure that projects 
the 2′ hydroxyl group toward the 5′-SS. The branch helix in the C 
complex is significantly distorted from the canonical A form and is 
docked into the active site by the branching-specific proteins, Cwc25, 
Yju2 and Isy1 (Figs. 2, 3c and 4e) to insert the 2′ hydroxyl group of 
the BP adenosine into the active center.
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©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



nature structural & molecular biology  VOLUME 24  NUMBER 10  OCTOBER 2017	 795

RE  V IE  W

The group II intron active site is stabilized by a network of RNA 
interactions with other RNA domains of the intron20,21. In the absence 
of such an RNA scaffold, the active site RNA of the spliceosome is sta-
bilized by surrounding proteins (Fig. 4d–f). Prp8, the largest and most 
conserved protein in the spliceosome, forms four major domains con-
nected by flexible linkers42,68: the N-terminal (N) domain; the ‘Large’ 
(L) domain that comprises the reverse transcriptase (RT), linker and 
endonuclease (EN) domains; the RNaseH-like (RH) domain; and 
the Jab1/MPN (Jab) domain. The RT domain is expanded by the 
helix bundle domain attached to its N terminus42,68. The U5 snRNA 
stems I and II are firmly bound to the N-terminal domain of Prp8  
and secured by a Prp8 polypeptide that is fitted into the minor 
groove64–69,71,72,77,78, while the exon-binding U5 snRNA loop 1 that 
is attached to stem I projects into the active site. The catalytic RNA 
core is accommodated in the active site cavity that is formed by the 
RT, EN and N domains42 (Fig. 4d–f) and is clamped onto Prp8 by 
NTC and NTR proteins, such as Cwc2, Bud31, Ecm2, Cef1 and Clf1 
and Syf2 (refs. 71,72) (Fig. 3c). These proteins act as a cradle for the 
active site RNA and remain bound throughout the catalytic phase of 
the spliceosome; hence, the structure of the RNA active site changes 
little between the Bact and C* complexes65,66,71,72,77,78 (Fig. 4d–f). In 
contrast, the branch helix moves substantially during the catalytic 
stage. In the C complex the branch helix in docked into the active 
site by the branching-specific factors (Cwc25, Yju2 and Isy1)71,72 
(Figs. 3c and 4e); after Prp16-induced release of these proteins, 
the branch helix is free to move and change its orientation between  
the two catalytic steps.

Remodeling for exon ligation
Cross-linking studies showed that the 5′ and 3′ exons are aligned by 
U5 snRNA loop 1 during exon ligation to allow the 3′ hydroxyl group 
of the 5′ exon to attack the 3′-SS32,33. The structure of the stalled  
C complex provides the first structural insights into the remodeling of 
the active site that is induced by the action of spliceosomal DEAH-box 
ATPases71 (Fig. 6). Prp16 is poised to bind and translocate the intron 
downstream of the branch helix to destabilize branching-specific fac-
tors71 (Figs. 2 and 6b). In the C complex, the 5′ exon is tethered by 
loop 1 of the U5 snRNA, and the terminal 3′ hydroxyl group of the 
5′ exon is already positioned near the catalytic Mg2+ ions. However, 

the branch helix that is docked into the active site by branch-specific  
factors prevents access of an incoming 3′ exon to the active site  
(Figs. 3c and 4c,e). This indicates that the active site of the spliceo-
some has to be remodeled to create space for binding of the 3′ exon. 
The structure of a C* spliceosome that was stalled right after Prp16 
action but before exon ligation further elucidated the consequences 
of Prp16 action77,78 (Figs. 3c and 6b). As in the C complex, the cata-
lytic RNA core is fastened onto Prp8 in the C* complex (Figs. 1c,  
2 and 3d) by proteins common to both steps, while the branch helix 
is rotated by ~75° as compared to its position in the C complex and 
is held in a new position by the Prp8 RH (Prp8RH) domain and by  
Slu7 and Prp18 together with the repositioned Prp17 WD40 domain 
(Figs. 3d, 4f and 6c). A β-hairpin that protrudes from the Prp8RH 
domain is likely to play an important functional role, as several 
mutations that affect the first and second steps of splicing have been 
mapped to it41. The Prp8RH domain has rotated by ~80° and extends 
its β-hairpin through the minor groove of the branch helix toward 
Cef1 (Figs. 3d, 4f and 6c). The Prp17 WD40 domain binds across the 
β-finger of the Prp8RH domain and Cef1, which stabilizes the rotated 
Prp8RH domain (Figs. 3d and 4f). Slu7 is essential for exon ligation 
but is dispensable when the distance between the BP and 3′-SS is 
shorter than nine nucleotides77,79. Although Slu7 stabilizes the reo-
riented Prp8RH domain, the precise role of Slu7 in promoting 3′ exon 
docking remains unclear. The rotation of the branch helix moves the 
BP adenosine out of the active site, together with the attached 5′ end 
of the intron linked to the BP adenosine, which creates a space for 
3′-exon docking and reorganizes the pairing between the 5′-SS and 
the U6 ACAGAGA region77,78 (Fig. 4a,f).

Structural basis for remodeling by DEAH-box ATPases
It has been proposed that, during the catalytic stage, the spliceosome 
exists in a dynamic equilibrium between several conformations80 and 
that this equilibrium is modulated both by the action of trans-acting 
factors such as Prp2, Prp16 and Prp22 and by co-functioning step-
specific factors80–83 (Figs. 3 and 6). The cryo-EM structures of the 
B, Bact, C and C* complexes have visualized these conformational 
changes, including the dramatic movement of the Prp8RH domain, 
Prp17, Syf1 and Clf1, as well as the more subtle movement of the 
Prp8EN domain (Figs. 2, 3d and 4f). To modulate such transitions 
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throughout the catalytic stage, DEAH-box ATPases bind the intron 
at a similar position 3′ of the BP (or the ligated exon junction for 
Prp22) and induce movement of the branch helix, as well as of these 
proteins (Fig. 6), underscoring a common remodeling mechanism, 
as discussed below. These trans-acting ATPases have also been impli-
cated in proofreading correct transitions through the pathway84–86. 
Biochemical studies suggested that DEAH-box ATPases, such as 
Prp16 and Prp22, act at a distance through a ‘winching’ mechanism 
that involves translocation toward, but not necessarily through, their 
remodeling targets27.

In the Bact complex, Prp2 binds the intron downstream of the 
branch helix that is held by Hsh155 within the SF3b complex65,66 
(Figs. 3b and 6a). Thus, translocation of Prp2 toward the BP could 
dissociate SF3a and SF3b from the intron, allowing the branch helix 
to dock into the active site87. In the C complex, Prp16 binds Prp8 in 
proximity to Cwc25 and is poised to bind the intron 3′ of the BP71 
(Figs. 3c and 6b). Translocation toward the BP would destabilize 
Cwc25 from the Prp8RH domain, thus allowing binding of Slu7 and 
Prp18 to the Prp8RH domain77. Notably, this model for action at a 
distance implies that transient destabilization of the branch helix, 
and thus both Prp16- and Prp2-mediated remodeling, would depend 
on the stability of the branch helix, consistent with proofreading by 
both Prp2 and Prp16 for usage of the correct BP83,85. More broadly, 
the large movement of the branch helix from the Bact to the C and C* 
complexes (Fig. 4d–f) that is promoted by Prp2 and Prp16, respec-
tively, could affect the stability of the RNA active site76,88, enabling 
Prp2 and Prp16 to proofread the integrity of the active site. Indeed, 
Prp16 proofreads catalytic interactions between the U6 snRNA and 
the catalytic Mg2+ (refs. 77,89).

Notably, the cryo-EM structures revealed both ‘open’ and ‘closed’ 
conformations for the DEAH-box ATPases (Fig. 6d). Because the 
open conformation observed for Prp22 allows RNA binding, toggling 
between the open and closed states could underlie the mechanism of 
RNA translocation upon ATP hydrolysis (Fig. 6d).

Dynamics of the Prp8RH domain
The structure of the Prp8RH domain was one of the first domain 
structures of Prp8 to be determined, and it attracted much atten-
tion39–41. On the basis of cross-linking and genetic experiments it 
was proposed that the Prp8RH domain might be part of the spliceo-
some active site90–92. The cryo-EM structures of the Bact, C and C* 
complexes now show that this is not the case. In the crystal structure 
of Prp8, the linker between the preceding Prp8L domain and the 
Prp8RH domain was disordered, suggesting that the Prp8RH domain 
could change its position with respect to the Prp8L domain during 
the splicing cycle42. Cryo-EM structures have now revealed that the 
Prp8RH domain moves significantly during the splicing cycle (Fig. 3). 
Dissociation of SF3b induced by Prp2 allows rotation of the branch 
helix and docking at the active site65,66,71,72,87 (Figs. 2, 3b and 4f), 
whereas dissociation of Cwc24 and Cwc27 permits binding of Cwc25, 
Yju2 and Isy1 to clamp the branch helix in the conformation neces-
sary for branching71,72 (Figs. 3c, 4e and 6a). In this C conformation, 
the Prp8RH domain moves into the body of the complex, while the 
β-hairpin binds along the extended branch helix and stabilizes its 
position in cooperation with Yju2 (Figs. 3c and 4e). The N termi-
nus of Cwc25 interacts with the Prp8RH domain, and together they 
triangulate interactions that lock the branch helix in its first-step 
conformation. Notably, the Prp8RH domain together with the NTC 
factor Syf1 holds the 3′ domain of the U2 snRNP. Thus, the Prp8RH 
domain has now moved closer to the active site and could impact the 
conformation of the branch helix. Indeed, following Prp16 action, the 

branch helix in the C* complex undergoes a dramatic conformational 
change to form an extended helix that is rotated ~75° from its position 
in the C complex77 (Figs. 3d and 4f). This is accompanied by an 80° 
inward rotation of the Prp8RH domain. The β-hairpin now extends in 
the minor groove of the branch helix, contacts Cef1 and straddles the 
interface between the branch helix and the ACAGAGA helix, placing 
it proximal to the active site (Fig. 3d), although it is not directly part 
of the active site. Here the β-hairpin stabilizes the reorganized inter-
action between the 5′-SS and the U6 snRNA ACAGAGA sequence, 
particularly the new base pair between U(+2) of the intron and A51 
in the U6 snRNA, which forms in C*. Indeed the β-hairpin interacts 
genetically with mutations at both U(+2) and A51 in U6 (refs. 91,92). 
The exon ligation factors Slu7 and Prp18 bind on the surface of the 
Prp8RH domain and lock it in the exon-ligation conformation, thus 
contributing to stabilization of the rotated branch helix.

Finally, in the post-splicing intron-lariat spliceosome (ILS) from 
Schizosaccharomyces pombe93, the Prp8RH domain is rotated out-
ward from the branch helix (Fig. 3e). The disassembly factor Cwf19 
(Drn1 in yeast), which is important for recruitment of the debranch-
ing enzyme Dbr1 to the spliceosome94, wedges between the Prp8RH 
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domain and the branch helix. These conformational changes are likely 
the result of mRNA release following Prp22 activity. Overall the struc-
tures of specific spliceosomal complexes reveal that while remodeling 
the complex, the ATPases Prp2, Prp16 and Prp22 each cause dramatic 
movements of the Prp8RH domain. The Prp8RH domain stabilizes and 
modulates the conformation of the branch helix during the catalytic 
stage, with its β-hairpin likely affecting the Prp16-mediated transition 
between the C and C* complexes (Figs. 3 and 6).

Human spliceosome
The mechanism of splicing is likely to be universal; however, some 
details between yeast and human splicing may differ, particularly with 
regard to splice site selection. The sequences of the 5′-SS and BP are 
stringently conserved in yeast, whereas in humans they are much more 
degenerate. The 3′-SS and the polypyrimidine tract that precedes the 
3′-SS in human introns are interrogated more than once during the 
splicing cycle, and the human spliceosome tolerates more sequence 
variability6. The structures of the human C* complex95,96 provided a 
first glimpse of the human spliceosome and revealed the association of 
the exon junction complex (EJC) through the binding of Cwc22, which 
is deposited by the spliceosome approximately between −20 and −25 
nucleotides upstream of the exon-exon junction and removed by the 
ribosome during translation. Positioning of the EJC in the structure is 
in good agreement with models based on the yeast C complex71 and 
consistent with biochemical evidence95. It is notable that the human 
RBM22 protein shares homology with both yeast Cwc2 and Ecm2, 
even though the human spliceosome lacks individual homologs of 
yeast Cwc2 and Ecm2 (ref. 71). Additionally, mammal-specific exon 
ligation factors such as PRKRIP1 stabilize the C* complex and may 
impact the active site, whereas the NTC-related factor RBM22 prob-
ably cooperates with the ATPase Aquarius97 to guide the intron toward 
the active site.

Structurally, free human U4/U6–U5 tri-snRNP differs signifi-
cantly from its yeast counterpart. SAD1, a protein that associates with 
human tri-snRNP, keeps the BRR2 helicase away from its substrate 
U4 snRNA, whereas PRP28 is found in the open conformation near 
the N and Large domains of PRP8 (ref. 98). The pre-B complex that 
forms when the U4/U6–U5 tri-snRNP associates with the A complex 
is remodeled by PRP28, which dissociates U1 snRNP from the 5′-SS to 
form a stable B complex. A previous low-resolution EM reconstruc-
tion showed that the structure of the U4/U6–U5 tri-snRNP in the 
human B complex is similar to that of its yeast counterpart99. Now 
cryo-EM analysis has revealed that the structure of human B complex 
is remarkably similar to that of yeast B complex100, except that the 
ACAGAGA helix is already formed in human B complex. Indeed, 
BRR2 helicase moves to a position found in the yeast tri-snRNP, in 
which the substrate U4 snRNA is bound in the active site of the BRR2 
N-terminal helicase cassette100, suggesting a conserved mechanism 
of pre-catalytic spliceosome assembly and activation.

Conclusions
The recent cryo-EM snapshots of the spliceosome allow a nearly complete 
structural view of key intermediates in the splicing pathway and provide an 
atomic framework to rationalize genetic and biochemical research from the 
last four decades. The structures reveal how this intricate molecular machine 
uses a single RNA-based active site to catalyze the branching and exon liga-
tion reactions that excise introns from pre-mRNA. The structural snapshots 
visualize for the first time how the substrates and products of these two reac-
tions are progressively docked and undocked at the active site using the ATP-
powered actions of RNA helicases and how movement of specific domains in 
Prp8 promotes conformational toggling of the spliceosome.

Our challenge now is to use structural information to design  
further experiments to uncover the detailed inner workings and  
energetics of this dynamic machine, which will keep us busy for  
many years to come.
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