A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation

Sebastian M. Fica*, Chris Oubridge, Max E. Wilkinson, Andrew J. Newman, Kiyoshi Nagai*

During exon ligation, the Saccharomyces cerevisiae spliceosome recognizes the 3′-splice site (3′SS) of precursor messenger RNA (pre-mRNA) through non–Watson-Crick pairing with the 5′SS and the branch adenosine, in a conformation stabilized by Prp18 and Prp8. Here we present the 3.3-angstrom cryo–electron microscopy structure of a human postcatalytic spliceosome just after exon ligation. The 3′SS docks at the active site through conserved RNA interactions in the absence of Prp18. Unexpectedly, the metazoan-specific FAM32A directly binds the 5′-exon and intron 3′SS of pre-mRNA and promotes exon ligation, as shown by functional assays. CACTIN, SDE2, and NKAP—factors implicated in alternative splicing—further stabilize the catalytic conformation of the spliceosome during exon ligation. Together these four proteins act as exon ligation factors. Our study reveals how the human spliceosome has co-opted additional proteins to modulate a conserved RNA-based mechanism for 3′SS selection and to potentially fine-tune alternative splicing at the exon ligation stage.

The spliceosome excises introns from pre-messenger RNA (pre-mRNAs) to produce mature mRNA in two sequential transesterification reactions—branching and exon ligation—catalyzed at a single active site (1–3). The spliceosome assembles de novo on each pre-mRNA from component small nuclear ribonucleoproteins (snRNPs) and undergoes numerous conformational changes mediated by trans-acting proteins and DEAD/H-box adenosine triphosphatases (ATPases) (4). A series of cryo–electron microscopy (cryo-EM) structures of Saccharomyces cerevisiae (hereafter referred to as yeast) spliceosomes at different stages of assembly, catalysis, and disassembly have rationalized decades of biochemical and genetic data and have provided considerable mechanistic insights into how the spliceosome achieves these two transesterification reactions (5, 6). During initial assembly, the U1 snRNP base-pairs with the 5′-splice site (5′SS), whereas the U2 snRNP forms the branch helix through pairing around the branch point (BP) adenosine. Prespliceosome formation, involving minimal interaction between the U1 and U2 snRNPs in yeast, brings the 5′SS and the BP sequence into one assembly. In mammals, formation of the prespliceosome is promoted and regulated by many alternative splicing factors (7, 8). The prespliceosome then associates with the U4/U6-U5 tri-snRNP to form the pre-B complex, which is converted via B to Bact when U1 and U4 snRNPs dissociate by the activities of Prp28 and Brz2, which is followed by binding of the multisubunit Prp19-associated (NCT) and Prp19-related (NTR) complexes. The 5′SS is handed off to the U6 small nuclear RNA (snRNA), and the catalytic core is formed during this conversion. The catalytic core of the spliceosome comprises U6 and U2 snRNPs folded into a compact structure that binds two catalytic divalent ions (12–14). The 5′SS is positioned precisely at the catalytic metal ions by pairing between the conserved 5′-intron sequence, GUAGUG, and the ACAGAGA sequence of U6 snRNA and between the 5′-exon and U5 snRNA loop I (15, 16). During Prp2-induced remodeling to B*, the branch helix is docked into the active site by the branching factors Cwc25 and Yju2, which allows the 2′-hydroxyl group of the 5′-exon to eliminate contaminating C* complex (supplementary methods; figs. S1 and S2) (7).

The RNA-based active site of the human P complex obtained by cryo-EM reconstruction at 3.3 Å resolution (supplementary materials PyMOL session, figs. S2 to S5) is similar to that of the human C* complex determined at an average resolution of 3.7 Å (22) and 5.9 Å (26) (Fig. 1). The resolution of our cryo-EM density map of the human P complex allowed us to build more complete models of proteins in the peripheral region (table S2) and parts of four additional proteins (Cactin, FAM32A, SDE2, and NKAP) not present in S. cerevisiae (Fig. 1, A and C, and figs. S5 and S6). The remaining parts of these proteins are predicted to be largely disordered. The densities for Cactin and FAM32A were partially visible in the map of the C* complex (22) but were not of sufficient quality for model building. The higher-resolution map of our P complex allowed us to build the C-terminal half of FAM32A based on density alone, but the highly charged N-terminal half is disordered (fig. S6).

A conserved 3′SS recognition mechanism

The RNA-based active site of the human P complex is essentially unchanged compared to C*,
with the U2 and U6 snRNAs forming a triple helix that binds two catalytic Mg\(^{2+}\) ions (fig. S7). In the human P complex, the newly formed mRNA remains bound at the active site through its 5′-exon pairing to U5 snRNA (fig. S7A). The new phosphodiester bond connecting the 5′-exon to the first two nucleotides of the 3′-exon is clearly visible, confirming that our sample represents the genuine P complex (fig. S5B). Clear density extending from the intron G(+1) and the BP adenosine could be modeled as the last three nucleotides of the 3′SS (Fig. 1E and fig. S5B). As in yeast, the Hoogsteen edge of the 3′SS G(–1) forms a base pair with the Watson-Crick edge of the 5′SS G(+1). Additionally, N7 of the 3′SS A (–2) forms an H-bond with N6 of the BP adenosine. Thus, the 3′SS is recognized, as in yeast (Fig. 1, E and F), through pairing with the 5′SS and the BP adenosine. The 5′SS U(+2) pairs with the U6 snRNA A51, which stacks on the 3′SS G(–1), an interaction that was not modeled in the human C* complex (22) and which allows the 3′-hydroxyl of 3′SS G(–1) to project into the active site. Docking

Fig. 1. Structure of a human P complex reveals unexpected exon ligation factors. (A) Overview of the P complex spliceosome complex. EJC, exon junction complex; NTC, Prp19-associated complex; NTR, Prp19-related complex. (B and C) Comparison of the P (present work) and C* (22) complexes reveals previously unknown factors. The presence of mRNA and the docked 3′-splice site in our P-complex structure are apparent. Dashed lines indicate possible path of the intron not visible in the density. The intron is shown in gray, the 5′-exon in orange, and the 3′-exon in yellow. Prp8\(^{RT}\), Prp8 endonuclease domain; Prp8\(^{NI}\), Prp8 N-terminal domain. (D) Binding of the substrate in the active site cavity of P complex. Prp8\(^{RT}\), Prp8 reverse-transcriptase domain. (E) The 3′SS is recognized by the 5′SS and the BP adenosine in the human P complex. (F) 3′SS recognition in the yeast P complex (7).
of the 3′SS onto the 5′SS is stabilized by the Prp8 alpha-finger and beta-finger—another feature similar to that of yeast (Fig. 1D). However, Prp18—which in yeast projects into the active site and stabilizes the intron upstream of the 3′SS at positions −3 to −5—was not observed in our map and was not detected by mass spectrometry either in our sample or in previous mass-spectrometric studies of C* and P complexes (20, 26, 27). Indeed, beyond the 3′SS (C−3), the intron becomes disordered in our map. The remaining nucleotides between the 3′SS and the branch helix loop out of the spliceosome, and their path is likely guided by mammalian-specific proteins, as described below.

FAM32A is a metazoan-specific exon ligation factor

The most notable finding in our structure is that FAM32A (figs. S5C and S6 and supplementary note 2), and expression of the full-length OTAG-12 in ovarian cancer and human embryonic kidney 293 (HEK293) cells suppressed cell growth whereas OTAG-12c with N-terminal deletion or OTAG-12a (HEK293) cells stabilized cell growth whereas OTAG-12c with N-terminal deletion or OTAG-12a with altered C-terminal sequence had no such effect. FAM32A (OTAG-12b, fig. S6B) bound in the P complex promotes mRNA formation for proapoptotic genes, acting as a tumor suppressor. Indeed, the entire C terminus of FAM32A is essentially invariant in metazoans from zebrafish to humans (Fig. 2C), consistent with a role in regulating splicing.

Depletion of FAM32A from HeLa nuclear extracts impaired exon ligation (Fig. 3, A to E, and fig. S8, A to C), causing accumulation of cleaved 5′-exon at the C* stage (fig. S8, D and E). Recombinant FAM32A restored efficient mRNA formation (Fig. 3D and fig. S8, B and C), demonstrating that FAM32A promotes splicing by facilitating exon ligation, in agreement with our structure. Ultraviolet (UV) cross-linking using pre-mRNA containing a single 4-thioU substitution at position −2 of the 5′-exon (Fig. 3, C, D, F, and G) produced two major cross-links (Fig. 3, F and G).

The one above 200 kDa represents Prp8, whereas the cross-link between 15 and 25 kDa was confirmed to be FAM32A by depletion and addition of slightly larger, tagged FAM32A (Fig. 3, G and H). P complexes assembled in FAM32A-depleted extracts contained mostly lariat-intermediate and cleaved 5′-exon, which cross-linked to residual FAM32A, demonstrating that FAM32A also binds the 5′-exon in the precatalytic C* complex (Fig. 3, F and G). Thus, FAM32A is a bona fide exon ligation factor that stabilizes docking of the 3′ SS into the active site and promotes splicing in mammals.

NKP and FAM32A stabilize Slu7 binding

As in yeast, Slu7 rigidifies the C*/P conformation by binding across the Prp8 EN and N domains (Fig. 1C and A, to C). Binding of the central region of Slu7 to the Prp8 EN domain is stabilized by FAM32A (Fig. 2B), whereas nuclear factor kB-activating protein (NKP)—a previously unidentified factor—promotes binding of the Slu7 N terminus onto Prp8 (Fig. 4C and fig. S5D). NKP is a 415-residue protein implicated in T cell development; it consists of highly charged repetitive sequences such as Ser-Arg and poly-Lys and is expected to be intrinsically disordered through almost its entire length. However, residues 329 to 358 form a short helix that bridges the N- and C-terminal fragments of Slu7 bound to Prp8 and stabilizes the P complex. Indeed, NKP binds exon sequences genome-wide and associates with mRNA in vitro, and depletion of NKP in vivo reduces splicing efficiency, consistent with a role in promoting mRNA formation (29).

Cactin, SDE2, and PRKRIPI stabilize the branch helix

The branch helix is locked into position by the WD40 domain of Prp7, CDC5L(Cef), and CRNKLI (Cif), as in yeast C* and P complexes (5, 7–9) (Fig. 4, D to G). Unexpectedly, the human P complex structure revealed that the branch helix is further secured in its exon ligation conformation by Cactin, SDE2, and PRKRIPI. Our cryo-EM map enabled us to build residues between 637 and 756 of Cactin, which folds into a b-sandwich domain. Its N-terminal region has long stretches of charged and polar amino acids, suggesting that these regions are intrinsically disordered. Its C terminus and a short α helix protruding from the

Fig. 3. FAM32A promotes exon ligation by binding the 5′-exon. (A and B) Depletion of FAM32A impairs exon ligation. (C) Overview of the UV cross-linking experiment. C(C−2) was changed to U(C−2) for these experiments. (D) FAM32A promotes exon ligation. (E) Effect of FAM32A depletion on exon ligation efficiency. Experiments were performed using a substrate with a single 32P at U(C−2) of the 5′-exon. Error bars represent SD (n = 3). (F) C* complexes accumulate in FAM32A-depleted extracts. Shown is RNA extracted from affinity-purified P complexes (see also fig. S8). (G) FAM32A cross-links to the 5′-exon. SDS–polyacrylamide gel electrophoresis of proteins labeled through cross-linking. SII-FAM32A, Strep-tactin–tagged FAM32A; 32P, 32P radioactive phosphate; 45SU, 4-thio-uridine.

(H) Positioning of FAM32A and Prp8 around C(C−2) of the 5′-exon rationalizes the cross-linking results.

Fig. 2. Overview of the UV cross-linking experiment. C(C−2) of the 5′-exon. SDS–polyacrylamide gel electrophoresis of proteins labeled through cross-linking. SII-FAM32A, Strep-tactin–tagged FAM32A; 32P, 32P radioactive phosphate; 45SU, 4-thio-uridine. (H) Positioning of FAM32A and Prp8 around C(C−2) of the 5′-exon rationalizes the cross-linking results.
β-sandwich domain interact with the Prp8 RNase H domain (Fig. 4, D and E), allowing Cactin to project a series of charged residues toward the branch helix, near the predicted path of the intron between the BP and the docked 3′SS (Fig. 4E), stabilizing 3′SS docking. Finally, a loop just before the C-terminal β strand of Cactin forms an extensive positively charged surface with the N-terminal region of CRNKL1 and with Cdc5L that surrounds the branch helix (Fig. 4, F and G). This surface is stabilized by an α helix of SDE2 that interacts with CRNKL1 and Cdc5L (Fig. 4G and fig. S9A). Our map also enabled us to build 30 additional residues of PRKRIP1 (22), which reveals its distinctive structure (fig. S9, B and C). The N-terminal residues 28 to 39 form an α helix that bridges between the U2 Sm ring and U2 snRNA at the tip of the branch helix. Together with the long C-terminal α helix bound to stem IV of U2 snRNA, it locks the branch helix into the exon-ligation orientation (fig. S9B). The intervening loop inserts into the active site and interacts with the Prp8 RNase H domain and the C terminus of Cactin to stabilize the branch helix and promote exon ligation.

SDE2 is first synthesized as an inactive precursor containing an N-terminal ubiquitin-fold domain, which is cleaved to produce activated Sde2-C. Our structure shows that the N-terminal ubiquitin domain of unprocessed SDE2 would clash with the branch helix (Fig. 4, F and G), explaining why the full-length protein cannot be incorporated into the spliceosome, as shown in Schizosaccharomyces pombe. S. pombe cells that cannot produce Sde2-C show defects in splicing of the same specific introns as cells lacking Cactin (30), suggesting that binding of Cactin and Sde2 to the spliceosome is highly cooperative. Indeed, cells lacking Sde2-C show reduced Cactin binding to the spliceosome (30). The P-complex structure shows how SDE2 guides CRNKL1 to bind Cactin (Fig. 4G), thus rationalizing the functional observations in S. pombe.

Discussion

The human P-complex structure shows that the 3′SS is recognized and docked into the active site of the spliceosome on the basis of the same base-pairing interactions seen in the yeast P complex (7–9). Similarly to yeast, a set of conserved factors including the RNase H domain of Prp8, Prp17, and Slu7 rigidify the position of the branch helix in the P complex and promote 3′SS docking (7–9). Unexpectedly, our high-resolution map of human P complex enabled us to build four additional proteins—FAM32A, Cactin, SDE2, and NKAP, which have been identified by mass spectrometry but have not been found in any of the cryo-EM structures of human spliceosomes (22–26). Three of these factors—NKAP, Cactin, and Sde2—cooperate with PRKRIP1 to lock the branch helix in place in P complex (Fig. 5). Indeed, Cactin and Sde2 promote splicing of the same specific subset of introns in S. pombe (31), highlighting their role in exon ligation, although the basis of their specificity is not understood. Together these factors partially compensate for the absence of Yju2, which

Fig. 4. Unexpected factors stabilize the P-complex conformation. (A to C) FAM32A and NKAP promote binding of Slu7 to the P complex. Prp8EN, Prp8 endonuclease domain. (D and E) Cactin stabilizes the position of the branch helix for exon ligation. Dashed lines indicate possible path of the intron not visible in the density. Py tract, polypyrimidine tract. (F) Previously unidentified factors position the branch helix. (G) SDE2 promotes Cactin binding near the branch helix. The loop of Cactin that projects a positive surface onto the branch helix is highlighted in magenta.
stabilizes the branch helix in the yeast P complex (Fig. S1OB) but which dissociates during the C to C* transition in humans (Fig. 5) (7).

In yeast, docking of the 3'SS is stabilized by Prp18, which abuts the 3'SS and guides Slu7 binding to Prp8. Indeed, in a subset of the yeast P-complex particles lacking Prp18 and Slu7 (7), the 3'SS is not stably docked in the active site and the branch helix shows weaker density, suggesting that the branch helix is mobile (7). By contrast, Prp18 was not detected by mass spectrometric analysis of the human C* and P complex spliceosome assembled on MINX pre-mRNAs (20, 26, 27), and Prp18 is absent in the cryo-EM structure of the human C* complex (22). The human P-complex structure presented here also lacks Prp18 (fig. S10, A and B, and table S3).

Notably, FAM32A penetrates into the active site of the P-complex spliceosome assembled on MINX pre-mRNA and promotes 3'SS docking, thus partly substituting for Prp18. Indeed, depletion of Prp18 from HeLa extracts abolishes exon ligation of β-globin pre-mRNA (32), raising the intriguing possibility that Prp18 promotes splicing of a subset of human transcripts, acting as in yeast. Indeed, in S. pombe, genetic depletion of Prp18 abolishes splicing in an intron-specific manner (33). Docking of the yeast Prp18 structure onto our human P complex indicates that Prp18 binding can be accommodated while FAM32A is bound in the active site of the human P complex (fig. S10, C and D). Hence, both Prp18 and FAM32A could influence alternative splicing of specific pre-mRNAs at the exon ligation stage. Consistent with this idea, Slu7 has been shown to influence selection of competing 3'SS by regulating docking of the 3'SS at the P-complex stage (34). Intriguingly, Slu7 does not closely approach the active site in our human P complex but binds FAM32A, which enters the active site. Thus, FAM32A could be responsible, at least in part, for the effects of Slu7 on 3'SS selection. Therefore, several exon ligation factors could modulate 3'SS choice during the catalytic stage.

Our P-complex structure highlights how in mammals specific proteins regulate a conserved mechanism for 3'SS recognition, and it also provides a framework to expand mechanistic studies of the human spliceosome to different cell types and different metabolic or developmental states.

REFERENCES AND NOTES

A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation

Sebastian M. Fica, Chris Oubridge, Max E. Wilkinson, Andrew J. Newman and Kiyoshi Nagai

Science 363 (6428), 710-714.
DOI: 10.1126/science.aaw5569 originally published online January 31, 2019

A human P spliceosome structure

Splicing of some pre-messenger RNAs could be regulated by cell type-specific splicing factors. Fica et al. describe the cryo-electron microscopy structure of the human postcatalytic (P) spliceosome. Surprisingly, it lacks the splicing factor Prp18, which plays an essential role in exon ligation in the yeast spliceosome. Instead, a metazoan-specific splicing factor, FAM32A, compensates for Prp18 and promotes exon ligation by penetrating the active sites and directly stapling the 5′ exon and the 3′ splice site. These findings suggest a way to control tissue-specific alternative splicing.

Science, this issue p. 710